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Abstract. We study the generaliialion copability of an extreme and asymmetridy diluted 
version of the Hopfield model through analytical and simulation techniques. Generalization is 
the abilily of lhe system for grouping a given set of correlated panems (the examples) in distinct 
classes (concepts), in such a way that each concept represents the " n o n  features of B set 
of examples and are attractors of the nehvork dynamics. The dynamics of the system can be 
solved exactly and the generalization error for the long-time regime can be evaluated. As occur 
for the storage capacity, here it is shown that dilution improves lhe performance of the network 
as a categoorization device when confronted with the fully connected Hopfield model. 

1. Introduction 

The modelling of the generalization ability of the brain has been one of the most active 
subjects in the field of neural networks and for a long time it was concentrated mainly in 
the context of feed-forward networks, where the task consists in training the net to infer an 
optimal rule that maps a set of inputs to a set of outputs. After having presented a given 
set of examples of the mapping to the net, it is desirable that the system would be able to 
associate any new input with the correct output. In the last few years, an increasing amount 
of work has also been devoted to extending the study of generalization abilities to attractor 
neural models, particularly, the Hopfield one [I-51. 

The Hopfield model [6] was originally introduced in the context of pattern recognition 
and in spite of its importance as a precursor work, it is seriously limited as a recognition 
device. One of its most troublesome restrictions is due to the necessity of statistical 
independence among the stored configurations: any correlation generates a noise which 
drastically damages its recognition ability. After the pioneering work of Hopfield [SI, a 
huge effort has been made to overcome this limitation, usually by introducing suitable, 
although more complex, modifications in the synaptic prescription [7]. Approaching this 
seemingly undesirable property from a new point of view, Fontanari [ 11 was able to show 
that, when correlated patterns are stored in the fully connected Hopfield model, in spite 
of loosing its retrieval capacity, it displays an ability to work as a categorizing machine. 

[I Permanent address: Depanamento de Fisica, Universidade Federal de Alagoas. 
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This means that, although the system may not recognize the stored patterns, it can decide 
to which category the input belongs. 

Since the synaptic couplings in the Hopfield model are symmetric, the dynamics is 
ruled by an energy-like function from which the long-term behaviour of the system can be 
obtained [SI. This approach allows us to study both the recognition and the generalization 
abilities. Nevertheless, real neurons behave in a very different way: on average, each one is 
connected with IO4 other neurons and these synaptic couplings are known to be asymmetric, 
When these two ingredients, dilution and asymmetry, are taken into account the dynamics 
of the system can easily be evaluated. 

In this paper we analyse the generalization ability of an asymmetric diluted version of 
the Hopfield model introduced by Denida et al [9] in the context of pattern recognition 
and for which the dynamics can be solved exactly. They proved that in this case the 
system is not only able to recognize the pattems, but also improves its storage capacity 
when compared with the fully connected version. Following [9] we extend the study of this 
model and show that, as occurs with the storage capacity, dilution and asymmetry improve 
the generalization ability. 

In section 2 we introduce the model and describe the generalization task in the context of 
attractor neural networks. In section 3 we obtain a recurrent equation for the generalization 
error and in section 4 we analyse the limit of infinite connectivity. Numerical simulations 
are presented in section 5. Finally, in section 6 we discuss the main results. 

2. The model 

The model consists of N binary neurons, each one modelled by an Ising-like variable Si 
which can take the values {-I. +l}, representing the passive and active states, respectively. 
The state of the network at time r is then given by an N-bit word (S;) whose evolution is 
ruled by synchronous heat bath dynamics 
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+1 with probability ( I  + exp[-2&hi(t)])-' 
-1 with probability (1 +exp[+2/3,hi(r)])-l. (1) 1 Si(t + 1) = 

The parameter Po (the inverse of the temperature To) measures the noise level of the net, 
h;( t )  is the post-synaptic potential on neuron i at time t ,  defined by 

N 

j # i  

where J; j  is the synaptic matrix connecting the pre and post-synaptic neurons j and i and 
its elements have the following form: 

(3) 
where the C;js are random independent variables that control the asymmetric dilution of the 
synapses and are chosen according to the following distribution: 

J . .  - C.. T 
11 - v i j  

( 3 C 
P G j )  = p ; j  - 1) + 1 - - S(C,j) (4) 

We assume that the synaptic efficacies of those connections that survive after dilution 
are given by the following Hebbian rule [I]:  
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where the #” = f l  are random independent variables and the N-bit words 
{h:”, .$”. . . . , tr] stand for the s p  stored configurations (U = 1.2,. . . ,s and p = 
1,2,. . , , p ) ,  These memories are grouped in p categories (indicated by the letter @), each 
one containing s configurations (indicated by the letter U) that represent different elements 
or examples of the category. The probability distribution of these variables is given by 

P ( ~ , ? ” ) = ~ ( l + ~ ~ b ) S ( ~ ~ - 1 ) + ~ ( 1 - ~ ~ b ) 6 ( ~ , ? ” + 1 )  (6 ) 
where the e,? are random independent variables which can take the values f l  with the 
same probability and represent the p concepts. The parameter b measures the overlap (the 
similarity) between a concept and an example 

((t:”t[)) = b s p y d i j  (7 1 

((t:”cr)) =6ij6,y[bZ+Sv~(1 -e ’ ) ] .  ( 8 )  

and also between two examples: 

The stored memories are then organized in a hierarchical tree. 
Due to the asymmetry in the couplings the dynamics given by (1) does not allow the 

definition of an energy-like function, preventing a thermodynamical approach. We must 
then restrict ourselves to consider the time evolution of the network and, since it is not 
possible to describe this evolution on a microscopic level, we look for a recurrent relation 
for the relevant macroscopic parameters. Due to the effect of temporal correlation between 
different neurons, the time evolution was only solved for the fully connected Hopfield 
model in some limiting cases (a finite number of stored patterns or few initial time steps) 
until very recently, when a solution valid in all time-scales was proposed by Coolen and 
Sherrington [lo]. Following a different approach, Derrida er al [9] have proved that in 
the limit C << In N (extreme dilution) these temporal correlations are negligible and the 
quenched disorder can be treated as an annealed one, yielding the exact solution for the 
network dynamics. In the next section, following this approach, we solve the dynamics in 
the context of generalization. 

3. The recurrent equations 

Since the interest is in the generalization ability, let us suppose that the initial configuration 
represents an example of the first category and we look for a solution with macroscopic 
overlap only with the first concept and with the same overlap mp” with all the stored 
examples, that is m’”(0) = m, for any U and mM”(0) - U ( N - ‘ I Z )  for @ > I ,  where 

. N  

Here (. . .) means both a thermal average at temperature T and over an ensemble of initial 
conditions. The categorization ability of the network is measured by the generalization error 

(10) 
1 - m l  

2 
E = -  

where m’ is the overlap between the first concept and the state of the network 
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Note that E is the fraction of bits in which (Si(t)) and (d) differ. Here it  is important to 
stress that this definition of the generalization error is not related to the one used in the 
context of learning theory, where it measures the ability of the system for extracting a rule 
from a given set of examples. Actually it would be better, in this paper, to use the term 
categorization instead of generalization, since our device associates a given example with 
a pre-existing category. Nevertheless, the word generalization has been widely used in all 
the related papers, so we prefer to mantain this terminology. 

C R da Silva er a1 

We then look for two functions f and g such that 

from which we will extract the long-time behaviour of E .  

From the definitions (9) and (11) and after performing the thermal average we obtain 

where ({ )) is an average over the patterns cr and e:". If after dilution the neuron i 
is connected to ki other neurons, denoted by ( j l ,  j 2 , .  .. , j k , ) ,  the local field hi(t)  can be 
written as: 

After averaging over the disorder, we obtain the following recurrent equations: 

x tanh[po((s - 21)(k - 2n) + k s ( p  - 1) - 2m)l 

where 

Here we have taken the thermodynamic limit and averaged over all possible connectivities 
k; of neuron i .  
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4. The limit of infinity connectivity 

In the limit of infinity connectivity (C -+ CO but C << InN)  and p + CO, with constant 
CY 5 p / C  and finite s, after some standard calculations [9] we obtain 

and 

where T = p-’ = T,/C is a reduced temperature, Dy is given by 

Dy dy e - ~ i i Z  
f i  

and 01’ is defined as 

CY‘ = 01[ 1 + (S - 1)b4] 

and 
* 1 

GI (s, b) = 2”” ( ) [ ( I  + b)‘ (1 - b)’-‘ f ( I  - b)’ (I  + by-‘] 

Note that for s = 1 and b = 1 we recover the expression obtained by Derrida et al [9] in 
the problem of pattern recognition. 

It the limit (Y -+ 0, we recover the equations obtained for the fully connected Hopfield 
model studied in [ I ]  for the case T = 0 and in  [5] for the case T # 0. Notice that 
although their equations ’look different, the difference stems from the chosen ansatz: the 
fully symmetric one (in this paper) and the asymmetric one in their case. 

We focus on the problem of having an extensive number of concepts (CY > 0) while 
the system is presented with a finite number of examples and starts analysing the noiseless 
limit T = 0. Figure I shows E as a function of s for b = 0.2 and several values of 
(Y/[YO, where 010 = 2/n is the critical value above which the system does not recognize 
uncorrelated patterns [9].  For small values of 01 the generalization error is a monotonically 
decreasing function of s. As CY increases this behaviour changes and E presents a maximum 
for s > 1. For 01 > olP a plateau emerges with E = 0.5 for s- < s < sf and at s+ the 
system undergoes a smooth transition to a generalization phase. Assuming that s+ >> 1, the 
binomial distribution of zg can be approximated by a gaussian distribution, and after some 
simple calculations we obtain 

where 



1598 C R da Silva er ai 

5 

Figure 1. The generalization error E as 
function o f  Ihe number of examples .c for 
T = O , b = 0 . 2 ~ d u f ~ ~ = 0 . 0 1 , 0 . 0 5 , 0 . 1 ,  
0.12, 0.1479 and 0.2. 

0 

Since the transition is continuous, for values of s close to but greater than s+ we know 
that m, << 1. Expanding the former equations we obtain the following relation among the 
parameters CY, b and s at the critical point: 

2[1 +b2(s-  l)]' 
ns[l + (S - l)b41 

C Y =  

Here it can be seen how the performance of the system as a generalization device strongly 
depends on the correlation b. Observe that fors = 1 we recover the critical value CYO = 2 / x  
obtained in 191. From equation (28) it is possible to get the following expression for s- 
and st: 

4uob2 )"']. (29) 
C Y O ( ~  - b2) ~ ( l  - b4) 

Sf = - bqCY0 - C Y )  + 2b4(CYo - 00 [ ' * O - a ( l + b 2 ) 2  
The value up at which a plateau emerges is then given by 

8b2 
= r( 1 + b2)' ' 

(30) 

At CY = CY,, the generalization error reaches the value 0.5 at a unique point 

1 f b 2  
sp = - b2 

and for (Y < up it never does attain the plateau. In figure 1. with b = 0.2 we obtain sp = 26 
and C Y ~ / C U O  = 0.148. 

For s >> 1 ,  m' -+ 1 and m,? -+ b and E decreases exponentially as 

where A is given by (27). Observe that this equation implies that for all values of cu there 
is always a value of s great enough above which the system starts generalizing. 

When the above results are confronted with those obtained for the fully connected 
Hopfield model at T = 0 [l] ,  one observes some novel properties. The transition to the 
generalization phase is always continuous for the diluted version but it is discontinuous in 
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Table 1. The generalization ermr E for b = 0.4. 01 = 0.028 and different values of s. both for 
the fully connected and for lhe extmmely diluted versions of the Hopfield model. 

s Fully connected Diluted 

10 0.500 0.1046 
20 OSW 0.0321 
30 0.032 0.0123 
40 0.021 4 10-3 
50 0.017 9 10-4 

Figure 2. The generalization error E as 
0 10 20 30 40 50 60 7 0  80 function of the number of examples s for 

5 
b = 0.3. CrlrrU = 0.3 and T = 0.04. 0.4. 
1.2 and 2.0. 

the fully connected case. For small values of s (few examples) the behaviour of the error 
E as a function of s is completely different in the two limits. Depending on the value of b 
and a, E can start increasing until it attains a maximum or even a plateau regime. 

In comparing the values of a in these papers, it is important to emphasize that, although 
their definitions are different (a = p / C  in OUT case and a = p J N  in [l]), they measure 
the same quantity. actually, the number of bits of stored concepts ( p N )  in units of the 
number of calculated couplings ( C N  and NZ, respectively). Note also that the results are 
all presented in different units of a (a0 = 2/12 - 0.64 for the diluted version and 0.138 for 
the fully connected case). In order to clarify this point, in table 1 we present the values 
of E for the two models, obtained for a = 0.028, b = 0.4 and for different values of s. 
For these values, the fully connected model generalizes at s, = 14 with a generalization 
error E - 0.09, while the diluted version attains the same value at s, = 9. We observe that 
dilution improves the performance of the model as a generalization device. 

Next we present the results for a and T # 0. Figure 2 displays E versus s for a/ao = 0.3, 
b = 0.3 and several values of T. The temperature T seems to play the same role as the 
parameter a in the noiseless case. As T increases, E goes from a monotonically decreasing 
to a plateau-like behaviour. In all cases analysed in this paper we found that temperature 
damages the generalization ability of the system: as T increases, a greater number of 
examples must be presented to the net to start generalization, similarly to fully connected 
Hopfield networks 151. Here again we find that dilution improves the capacity of the 
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network. Finally, in figure 3 we show the critical lines T versus a/ao below which the 
system is able to generalize with only 50 examples and with an error E less than 0.05, for 
b = 0.3 and b = 0.4. As expected, as b increases the generalization phase also increases. 

C R da Silva et a1 

0.00 0.05 0.10 0.15 0.20 0.25 

4% 

Figure 3. The critical lines T versus eJu0 
separating the generalization phase (G) a d  the 
non-genedimtion phase (NG) for 50 examples, 
b = 0.3 and b = 0.4. The lines correspond to 
m error E = 0.m. 

5. Numerical simulations 

In this section we compare the analytical and simulation results. Although it seems that the 
limit of extreme dilution discussed in this paper would be hard to implement in a computer 
(because the conditions C << In N and C >> 1 require a huge number of neurons, greater 
than any previously presented in the literature), in a recent work, Arenzon and Lemke [ I l l  
reproduced numerically the results obtained by Derrida eta1 191 working with large networks 
(up to N = 16000) and finite, fixed connectivity (C = 20). Note that the extremely diluted 
version requires a significatively smaller numerical effort than the fully connected version: 
instead of storing or calculating a complete N x N coupling matrix, one need only store 
two N x C matrices, one to store the neighbours of a given neuron and the other for the 
values of each non-zero synaptic connection. 

Following these ideas, we also studied numerically the generalization ability of the 
model for T = 0. The simulation was performed for a/ao = 0.12 and 0.20, and the sizes 
used were N = 10000 and 20000. The number of concepts was always p = 2 and the 
connectivity was C = 26 for a/ao = 0.12 and C = 16 for a/ao = 0.20. 

The algorithm used is the following: initially a set of p uncorrelated concepts is created. 
For each concept, one example (s = I )  is generated and stored in the network. The initial 
state is chosen as the first concept and the network is updated synchronously during a fixed 
number of time units, until the fluctuations in the overlap , I r  are negligible (the system 
may not achieve a fixed point). Then, a temporal average of E is calculated over 50 time 
units. Next, another example is created (s --t s + 1) and the same steps are repeated. In 
order to make a configurational average, this procedure is repeated for 20 different samples, 
using different concepts, examples and initial configurations. 

In figures 4 and 5 we present the results for a/ao = 0.12 and 0.20, respectively. 
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0.4 

0.5 

E 

0.2 

0.1 
Figure 4. The generalization e m r  P versus 
the number of examples s for b = 0.2 and 
n/oo = 0.12. The full curves correspond to 

0 20 40 60 80 100 120 140 the analytical solutions. For the simulations 
we used p = 2, C = 26 and N = 10000 
(open circles) and 20000 (full squares). 

0.0 

S 

0.1 I 1 Figure 5. The generalization error E versus 
the number of examples s for b = 0.2 and 
n/uo = 0.2. The full curves correspond to lhe 

used p = 2. C = 16 and N = 10000 (open 
o 20 40 60 80 100 120 ,110 analytical solutions. For the simulations we 

circles) and 20000 (fuil squares). 

0.0 

S 

The full curves are the solutions of (20) and (21) (valid for C -+ CO). Note that for 
small values of s the simulations reproduce the analytical results very well, even for small 
systems. As s increases, the behaviour displays a sensitive dependence on the size of the 
system. For s >> 1 we observe a systematic but small deviation from the theoretical data, 
and this behaviour does not seem to be due to finite size effects. We believe that this 
discrepancy is due to the fact that in this region the simulations were done for s >> p, 
while the analytical results are only valid for p >> s. Anyway, note that the criticd 
values of s+ obtained in the simulations for OI/CQ tends to the exact value s+ = 88 as N 
increases. 
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6. Conclusions 

In this paper we studied the generalization ability of an extremely diluted version of the 
Hopfield model, by training it with examples of a given set of concepts and showed that 
after a certain number of examples have been taught, the system is able to generalize, that 
is, to create an attractor of the dynamics with a macroscopic overlap with the concept. The 
long-time behaviour of the generalization error was obtained through the exact equation for 
the time evolution of the overlap mI between the state of the system at time t and one of 
the concepts. 

Summarizing our results, it can be said that, besides being more realistic from a 
biological point of view, the diluted model presents two main features as a generalization 
device. First, it generalizes better than the fully connected version of the model, i.e. it needs 
a smaller number of examples i n  order to correctly classify the inputs into categories. This 
behaviour is observed both for noisy and noiseless dynamics and for a = 0 and a # 0. 
Second, the results obtained in this work, although involving the limit C << In N ,  can be 
easily reproduced by numerical simulations, and with a considerably lower computational 
cost. We also found other interesting behaviours in the diluted Hopfield model for T = 0 
the system generalizes for any value of LY and the inclusion of noise damages its performance 
as a generalization device (for a given a, b and s. E(TI)  < E ( % )  if ‘jj < T2). It must be 
emphasized that this behaviour is a consequence of the chosen symmetric ansatz: if an 
asymmetric solution were considered, for LY = 0 and some range of T, the system would 
start generalizing earlier for higher temperatures. Also, €or small values of s and depending 
on the value of E the curve E x s displays a different behaviour: after a brief decreasing, it 
starts monotonically increasing as a function of s, until it attains a maximum or a plateau, 
from which falls down exponentially into a generalization phase. 
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